Ir al contenido

Documat


Algebraic weak factorisation systems II: Categories of weak maps

  • John Bourke [1] ; Richard Garner [2]
    1. [1] Masaryk University

      Masaryk University

      Chequia

    2. [2] Macquarie University

      Macquarie University

      Australia

  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 220, Nº 1 (January 2016), 2016, págs. 148-174
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2015.06.003
  • Enlaces
  • Resumen
    • We investigate the categories of weak maps associated to an algebraic weak factorisation system (awfs) in the sense of Grandis–Tholen [14]. For any awfs on a category with an initial object, cofibrant replacement forms a comonad, and the category of (left) weak maps associated to the awfs is by definition the Kleisli category of this comonad. We exhibit categories of weak maps as a kind of “homotopy category”, that freely adjoins a section for every “acyclic fibration” (= right map) of the awfs; and using this characterisation, we give an alternate description of categories of weak maps in terms of spans with left leg an acyclic fibration. We moreover show that the 2-functor sending each awfs on a suitable category to its cofibrant replacement comonad has a fully faithful right adjoint: so exhibiting the theory of comonads, and dually of monads, as incorporated into the theory of awfs. We also describe various applications of the general theory: to the generalised sketches of Kinoshita–Power–Takeyama [22], to the two-dimensional monad theory of Blackwell–Kelly–Power [4], and to the theory of dg-categories [19].


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno