Ir al contenido

Documat


Residual-based a posteriori error estimation for stochastic magnetostatic problems

  • D.H. Mac [1] ; Z. Tang [2] ; S. Clénet [1] ; E. Creusé [3]
    1. [1] Inria research centre Lille - Nord Europe

      Inria research centre Lille - Nord Europe

      Arrondissement de Lille, Francia

    2. [2] University of Lille Nord de France

      University of Lille Nord de France

      Arrondissement de Lille, Francia

    3. [3] Université Lille Nord de France & INRIA Lille Nord Europe, France
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 289, Nº 1 (1 December 2015), 2015, págs. 51-67
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2015.03.027
  • Enlaces
  • Resumen
    • In this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial discretization is performed with finite elements and the stochastic one with a polynomial chaos expansion. As a consequence, the numerical error results from these two levels of discretization. In this paper, we propose an error estimator that takes into account these two sources of error, and which is evaluated from the residuals.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno