Ir al contenido

Documat


AMF-Runge–Kutta formulas and error estimates for the time integration of advection diffusion reaction PDEs

    1. [1] Universidad de La Laguna

      Universidad de La Laguna

      San Cristóbal de La Laguna, España

  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 289, Nº 1 (1 December 2015), 2015, págs. 3-21
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2015.03.048
  • Enlaces
  • Resumen
    • The convergence of a family of AMF-Runge–Kutta methods (in short AMF-RK) for the time integration of evolutionary Partial Differential Equations (PDEs) of Advection Diffusion Reaction type semi-discretized in space is considered. The methods are based on very few inexact Newton Iterations applied to Implicit Runge–Kutta formulas by combining the use of a natural splitting for the underlying Jacobians and the Approximate Matrix Factorization (AMF) technique. This approach allows a very cheap implementation of the Runge–Kutta formula under consideration. Particular AMF-RK methods based on Radau IIA formulas are considered. These methods have given very competitive results when compared with important formulas in the literature for multidimensional systems of non-linear parabolic PDE problems. Uniform bounds for the global time-space errors on semi-linear PDEs when simultaneously the time step-size and the spatial grid resolution tend to zero are derived. Numerical illustrations supporting the theory are presented.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno