Ir al contenido

Documat


Resumen de Dynamic inelastic structural analysis by boundary element methods

D. E. Beskos

  • Boundary element methodologies for the determination of the response of inelastic two-and three-dimensional solids and structures as well as beams and flexural plates to dynamic loads are briefly presented and critically discussed. Elastoplastic and viscoplastic material behaviour in the framework of small deformation theories are considered. These methodologies can be separated into four main categories: those which employ the elastodynamic fundamental solution in their formulation, those which employ the elastostatic fundamental solution in their formulation, those which combine boundary and finite elements for the creation of an efficient hybrid scheme and those representing special boundary element techniques. The first category, in addition to the boundary discretization, requires a discretization of those parts of the interior domain expected to become inelastic, while the second category a discretization of the whole interior domain, unless the inertial domain integrals are transformed by the dual reciprocity technique into boundary ones, in which case only the inelastic parts of the domain have to be discretized. The third category employs finite elements for one part of the structure and boundary elements for its remaining part in an effort to combine the advantages of both methods. Finally, the fourth category includes special boundary element techniques for inelastic beams and plates and symmetric boundary element formulations. The discretized equations of motion in all the above methodologies are solved by efficient step-by-step time integration algorithms. Numerical examples involving two-and three-dimensional solids and structures and flexural plates are presented to illustrate all these methodologies and demonstrate their advantages. Finally, directions for future research in the area are suggested.


Fundación Dialnet

Mi Documat