Ir al contenido

Documat


An optimal error estimate for upwind Finite Volume methods for nonlinear hyperbolic conservation laws

  • Autores: Daniel Bouche, Jean-Michel Ghidaglia, Frédéric P. Pascal
  • Localización: Applied numerical mathematics, ISSN-e 0168-9274, Vol. 61, Nº. 11, 2011, págs. 1114-1131
  • Idioma: inglés
  • DOI: 10.1016/j.apnum.2011.07.005
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The purpose of this paper is to show that the cell-centered upwind Finite Volume scheme applied to general hyperbolic systems of m conservation laws approximates smooth solutions to the continuous problem at order one in space and time. As it is now well understood, there is a lack of consistency for order one upwind Finite Volume schemes: the truncation error does not tend to zero as the time step and the grid size tend to zero. Here, following our previous papers on scalar equations, we construct a corrector that allows us to prove the expected error estimate for nonlinear systems of equations in one dimension.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno