Ir al contenido

Documat


Filtros no lineales para reconstruir señales de electrocardiogramas

  • Infante, Saba [1] ; Sánchez, Luis [1] ; Cedeño, Fernando [1]
    1. [1] Universidad de Carabobo

      Universidad de Carabobo

      Venezuela

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 21, Nº. 2, 2014, págs. 199-226
  • Idioma: español
  • DOI: 10.15517/rmta.v21i2.15182
  • Títulos paralelos:
    • Nonlinear filters to reconstruct electrocardiogram signals
  • Enlaces
  • Resumen
    • español

      Las señales de los electrocardiogramas han sido usadas en patologías cardíacas para detectar enfermedades del corazón. El objetivo principal de este trabajo es proponer técnicas de filtraje de señales para reducir el ruido, extraer información, reconstruir los estados, y propiedades morfológicas de los latidos del corazón. Adicionalmente se pretende representar la ac- tividad cardíaca en forma simple, informativa, precisa, y de fácil inter- pretación para los Cardiólogos. Para lograr estos objetivos se proponen implementar los siguientes algoritmos: filtro de partículas genérico (FPG), filtro de partículas con remuestreo (FPR), filtro de Kalman sin esencia (FKSE), y el filtro de partículas sin esencia (FPSE), considerando la es- tructura básica del modelo dinámico sintético de McSharry et al. (2003) [16]. Los resultados demuestran que los filtros se desempeñan muy bien en la reconstrucción de los estados del sistema del ritmo cardíaco, aun introduciendo pequeñas variaciones en las varianzas de los ruidos de la ecuación de observación; es decir, los métodos tiene la capacidad de repro- ducir la señal original del modelo sintético simulado y del modelo sintético con datos reales en forma precisa. Finalmente se evalúa el desempeño de los filtros en términos de la desviación estándar empírica, observándose poca variabilidad entre los errores estimados y una rápida ejecución de los algoritmos. 

    • English

      ECG signals have been used in cardiac pathology to detect disease heart. The main objective of this paper is to propose signal filtering techniques to reduce noise, extract information, to reconstruct the states and properties Morphological heartbeat. In addition, aims to represent the cardiac activity in a simple, informative, accurate, and easy to interpret for cardiologists. To achieve these objectives are proposed to implement the following algo- rithms: generic particle filter (GPF), resampling particle filter (RPF), un- scented Kalman filter (UKF) and the unscented particle filter (UFP) con- sidering the basic structure of synthetic dynamic model McSharry et al. (2003) [16]. The results show that filter performs very well in the recon- struction of the states heart rate system, while introducing small variations in the variances of the noises of the equation observation, ie, the methods have the ability to reproduce the original signal the synthetic model simu- lated and the synthetic model with real data accurately. Finally evaluates the performance of the filters in terms of the empirical standard deviation, showing little variability among the estimated errors and fast execution of algorithms. 

  • Referencias bibliográficas
    • Andrieu, C; Doucet, A; Holenstein, R. (2010) “Particle Markov chain Monte Carlo methods”, Journal Royal Statistical Society, B, 72(3): 269–342.
    • Arulampalam, S.; Maskell, S.; Gordon, N.; Clapp, T.A. (2002) “Tutorial on particle filters for on-line non linear/non Gaussian Bayesian tracking”,...
    • Barros, A; Mansour, A; Ohnishi, N. (1998) “Removing artifacts from electrocardiographic signals using independent components analysis”, Neuro-computing...
    • Chen, Z. (2003) ”Bayesian filtering: From Kalman filters to particle filters, and beyond”, Technical report, Adaptive Systems Lab, McMaster...
    • Chui, C; Chen, G. (2009) Kalman Filtering with Real-Time Applications, Fourth Edition. Springer, Berlin.
    • Clifford, G.; Tarassenko, L. (2001) “One pass training of optimal architecture auto associative neural network for detecting ectopic beats”,...
    • Doucet, A.; Godsill, S.; Andrieu, C. (2000) ”On sequential Monte Carlo sampling methods for Bayesian filtering”, Statistics and Computing...
    • Doucet, A.; De Freitas, J.F.G.; Gordon, N., Eds. (2001) Sequential Monte Carlo Methods in Practice. Springer Verlag, New York.
    • Gordon, N.; Salmond, D.; Smith, A.F.M. (1993) “Novel approach to nonlinear non Gaussian Bayesian state estimation”, IEEE Proceedings F (Radar...
    • He, T; Clifford, G; Tarassenko, L. (2006) ”Application of independent component analysis in removing artefacts from the electrocardiogram”,...
    • Julier, S. (2000) “The scaled unscented transformation”, IEEE Transactions on Automatic Control 45(3): 477–482.
    • Julier, S; Uhlmann, J; Durrant, H. (2000) “A new method for nonlinear transformation of means and covariances in filter and estimators”, IEEE...
    • Julier S.J.; Uhlmann, J.K. (2004) “Unscented filtering and nonlinear estimation”, Proceedings of the IEEE 92(3): 401–422.
    • Kong, A; Liu, J; Wong, W. (1994) “Sequential imputations and Bayesian missing data problems”, Journal of the American Statistical Association...
    • Liu, J. (1996) “Metropolized independent sampling with comparison to rejection sampling and importance sampling”, Statistics and Computing...
    • McSharry, P; Clifford, G; Tarassenko, L; Smith, L. (2003) “A dynamical model for generating synthetic electrocardiogram signals”, IEEE Transactions...
    • Moody, G.; Mark, R. (1989) “QRS morphology representation and noise estimation using the Karhunen-Loeve transform”, Computers in Cardiology...
    • Nikolaev, N; Nikolov, Z; Gotchev, A; Egiazarian, K. (2000) “Wavelet domain Wiener filtering for ECG denoising using improved signal estimate”,...
    • Paul, J; Reddy, M; Kumar, V. (2000) “A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG”, IEEE Trans....
    • Potter M; Gadhok, N; Kinsner, W. (2002) “Separation performance of ICA on simulated EEG and ECG signals contaminated by noise”, in: Canadian...
    • Sameni, R; Shamsollahi, M; Jutten, C. (2005) “Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG...
    • Sánchez, L., Infante, S; (2013) “Reconstruction of chaotic dynamic systems using nonlinear filters”, Chilean Journal of Statistics 4(1): 35–54.
    • Sayadi, O; Sameni, R. (2007) “ECG denoising using parameters of ECG dynamical model as the states of an extended Kalman filter”, in: 29th...
    • Sayadi, O; Shamsollahi, M. (2008a) “ECG denoising and compression using a modified extended Kalman filter structure”, IEEE Trans. on Biomedical...
    • Sayadi, O; Shamsollahi, M. (2008b) “Model-based fiducial points extraction for baseline wandered electrocardiograms”, IEEE Trans. on Biomedical...
    • Sayadi, O; Shamsollahi, M. (2009) “A model-based Bayesian framework for ECG beat segmentation”. Journal of Physiological Measurement 30(3):...
    • Sayadi, O; Shamsollahi, M; Clifford, G.D. (2010) “Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model”,...
    • Schreiber, T; Kaplan, D.T. (1996) “Nonlinear noise reduction for electro- cardiograms”, Chaos 6(1): 87–92.
    • Simon, D. (2006) Optimal State Estimation. Kalman, H%, and Nonlinear Approaches. John Wiley & Sons, Hoboken NJ.
    • Storvik, G. (2002) “Paticle filters in state space models with the presence of unknown static parameters”, IEEE Trans. on Signal Processing...
    • van der Merwe, R.; Doucet, A; de Freitas, N; Wan, E. (2000) “The unscented particle filter”. Technical Report CUED/F-INFENG/TR 380, Engineering...
    • van der Merwe, R. (2004) Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. PhD. Thesis, OGI School of...
    • Vepa, R. (2010) “Nonlinear filtering of oscillatory measurements in cardiovascular applications”, Mathematical Problems in Engineering 2001,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno