Sergio Gerardo de los Cobos Silva, Miguel Ángel Gutiérrez Andrade, Eric Alfredo Rincón García, Pedro Lara Velázquez, Manuel Aguilar Cornejo
Este trabajo presenta la comparación de los resultados de las técnicas heurísticas de ABC colonias de abejas artificiales (Artificial Bee Colony) y PSO enjambres de partículas (Particle Swarm Optimization) que son utilizadas para la estimación de parámetros de modelos de regresión no lineal. Los algoritmos fueron probados sobre 27 bases de datos de la colección NIST(2001), de las cuales 8 son consideradas con un alto grado de dificultad, 11 con un grado de dificultad medio y 8 con un grado de dificultad bajo. Se presentan los resultados experimentales.
This paper shows the comparison results of ABC (Artificial Bee Colony) and PSO (Particle Swarm Optimization) heuristic tech- niques that were used to estimate parameters for nonlinear regression models. The algorithms were tested on 27 data bases from the NIST collection (2001), 8 of these are considered to have high difficulty, 11 medium difficulty and 8 low difficulty. Experimental results are presented.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados