Ir al contenido

Documat


Graph irregularity: Discussion, graph extensions and new proposals

  • Boaventura Netto, Paulo Oswaldo [1]
    1. [1] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 22, Nº. 2, 2015, págs. 293-310
  • Idioma: español
  • DOI: 10.15517/rmta.v22i2.20836
  • Títulos paralelos:
    • Irregularidad de grafos: Discusión, extensiones de grafos y nuevas propuestas
  • Enlaces
  • Resumen
    • español

      This paper presents some measures of graph irregularity found in the literature. From their discussion two important points appear: first, the absence of relationship between all of them, but a single exception, with the structures of the corresponding graphs and, moreover, their known extremal values correspond to graphs having degree sequences with few different values. Two new measures are proposed, seeking to meet these points. Their values are calculated for extremal graphs associated with other measures and for antiregular graphs. Finally, we calculate the boxplots of all these measures for some sets of graphs taken from the literature and also for four sets where the ordered degree sequences are constant. All measures involved have polynomial complexity.

    • English

      Este artículo presenta un análisis de las medidas de irregularidad de grafos que se encuentran en la literatura. Desde su discusión dos puntos importantes aparecen: primero, la ausencia de relación entre todos ellos, sino una sola excepción - con las estructuras de los grafos correspondientes y, además, sus valores extremales conocidos corresponden a grafos que tienen secuencias de grados con pocos valores diferentes. Se proponen dos nuevas medidas, tratando de cumplir con estos puntos. Sus valores se calculan para grafos extremales asociados con otras medidas y para grafos antiregulares. Por último, se determinan los gráficos de quartiles o boxplots de todas estas medidas, para algunos conjuntos de grafos de la literatura y para cuatro conjuntos donde las secuencias ordenadas de grados son constantes. Todas las medidas estudiadas tienen complejidad polinómica.

  • Referencias bibliográficas
    • Abdo, H. ; Dimitrov, D. (2012) “The total irregularity of a graph”, in: http://arXiv.org:1207.5267v1 [cs.DM] consulted 10-10-13.
    • Alavi, Y.; Chartrand, G.; Chung, F.R.K.; Graham, R.L; Oeller-mann, O.R.(1987). “Highly irregular graphs”, Journal of Graph Theory 11(2):235–249.
    • Albertson, P.(1997) “The irregularity of a graph”, Ars Combinatoria 46219–225.
    • Behzad, M.; Chartrand, G. (1967) “No graph is perfect”, American Mathematical Monthly 74: 962–963.
    • Bell, F.K. (1992) “A note on the irregularity of graphs”, Linear Algebra and its Applications 161: 45–54.
    • Berge, C. (1971) Graphes et Hypergraphes. Dunod, Paris.
    • Boaventura-Netto, P.O. (2008) “P-antiregular graphs”, Advances and Applications in Discrete Mathematics 1(2): 133-148.
    • Boaventura-Netto, P.O. (2012) Grafos: Teoria, Modelos, Algoritmos. 5th ed. Blucher, São Paulo.
    • Boaventura-Netto, P.O. (2013a) “Medidas polinomiais de irregularidade em grafos: discussão e proposta”, Optima2013, Concepción, Chile, October...
    • Boaventura-Netto, P.O. (2013b) “QAPV: a polynomial invariant for graph isomorphism testing”, Pesquisa Operacional 33(2): 163–184.
    • Bondy, J.A.; Murty, U.S.R. (1978) Graph Theory and Applications. Macmillan, London.
    • Chartrand, G.; Erdos, P.; Oellermann, O.R. (1988) “How to define an irregular graph”, The College Mathematical Journal 19(1): 36–42.
    • Estrada, E. (2010a) “Quantifying network heterogeneity”, Physical Review E 82: 66102.
    • Estrada, E. (2010b) “Randić index, irregularity and complex biomolecular networks”, Acta Chimica Slovenica 57: 597-603.
    • Gutman, I.; Hansen, P.; Mélot, H. (2005) “Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical...
    • Hansen, P.; Mélot, H. (2005) “Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph”, in S. Fajtlowicz...
    • Harary, F. (1987) Graph Theory Addison-Wesley, Reading MA.
    • Majcher, Z.; Michael, J. (1997) “Degree sequences of highly irregular graphs”, Discrete Mathematics 164: 225–236.
    • Merris, R. (2003) “Antiregular graphs are universal for trees”, Publ. Eletrotehn Fak. Univ. Beograd Ser. Mat 14: 1–3.
    • Nikiforov, V. (2006) “Eigenvalues and degree deviation in graphs”, Linear Algebra and its Applications 414: 347–360.
    • Oliveira, J.A. (2012) Medidas de Irregularidade em Grafos. D.Sc. Thesis (in Portuguese) COPPE/Federal University of Rio de Janeiro.
    • Oliveira, J.A.; Oliveira, C.S.; Justel, C.; Abreu, N.M.M. (2013) “Measures of irregularity of graphs”, Pesquisa Operacional 33(3): 383–398.
    • Porumbel, D.C. (2011) “Isomorphism testing via polynomial-time graph extensions”, Journal of Mathematical Modelling and Algorithms 10(2):119–143.
    • R Core Team (2014) “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria, in:...
    • Santo, M. De; Foggia, P.; Sansone, C.; Vento, M. (2003) “A large database of graphs and its use for benchmarking graph isomorphism algorithms”,...
    • Sierksma, G.; Hoogeven, H. (1991) “Seven criteria for integer sequences being graphic”, J. Graph Theory 15(2): 223–231.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno