Ir al contenido

Documat


Finite dimensional compact and unitary Lie superalgebras

  • Saeid Azam [1] ; Karl-Hermann Neeb [2]
    1. [1] Institute for Research in Fundamental Sciences

      Institute for Research in Fundamental Sciences

      Irán

    2. [2] Friedrich-Alexander University Erlangen–Nuremberg, Germany
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 219, Nº 10 (October 2015), 2015, págs. 4422-4440
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2015.02.024
  • Enlaces
  • Resumen
    • Motivated by the theory of unitary representations of finite dimensional Lie supergroups, we describe those Lie superalgebras which have a faithful finite dimensional unitary representation. We call these Lie superalgebras unitary. This is achieved by describing the classification of real finite dimensional compact simple Lie superalgebras, and analyzing, in a rather elementary and direct way, the decomposition of reductive Lie superalgebras (g is a semisimple -module) over fields of characteristic zero into ideals.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno