Ir al contenido

Documat


On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)

  • Karamzadeh, O. A. S. [1] ; Namdari, M. [1] ; Soltanpour, S. [1]
    1. [1] Shahid Chamran University of Ahvaz

      Shahid Chamran University of Ahvaz

      Irán

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 16, Nº. 2, 2015, págs. 183-207
  • Idioma: inglés
  • DOI: 10.4995/agt.2015.3445
  • Enlaces
  • Resumen
    • Let $C_c(X)=\{f\in C(X) : |f(X)|\leq \aleph_0\}$, $C^F(X)=\{f\in C(X): |f(X)|˂\infty\}$, and $L_c(X)=\{f\in C(X) : \overline{C_f}=X\}$, where $C_f$ is the union of all open subsets $U\subseteq X$ such that $|f(U)|\leq\aleph_0$, and $C_F(X)$ be the socle of $C(X)$ (i.e., the sum of minimal ideals of $C(X)$). It is shown that if $X$ is a locally compact space, then $L_c(X)=C(X)$ if and only if $X$ is locally scattered.We observe that $L_c(X)$ enjoys most of the important properties which are shared by $C(X)$ and $C_c(X)$. Spaces $X$ such that $L_c(X)$ is regular (von Neumann) are characterized. Similarly to $C(X)$ and $C_c(X)$, it is shown that $L_c(X)$ is a regular ring if and only if it is $\aleph_0$-selfinjective.We also determine spaces $X$ such that ${\rm Soc}{\big(}L_c(X){\big)}=C_F(X)$ (resp., ${\rm Soc}{\big(}L_c(X){\big)}={\rm Soc}{\big(}C_c(X){\big)}$). It is proved that if $C_F(X)$ is a maximal ideal in $L_c(X)$, then $C_c(X)=C^F(X)=L_c(X)\cong \prod\limits_{i=1}^n R_i$, where $R_i=\mathbb R$ for each $i$, and $X$ has a unique infinite clopen connected subset. The converse of the latter result is also given. The spaces $X$ for which $C_F(X)$ is a prime ideal in $L_c(X)$are characterized and consequently for these spaces, we infer that $L_c(X)$ can not be isomorphic to any $C(Y)$.

  • Referencias bibliográficas
    • . Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), 2149-2154.
    • http://dx.doi.org/10.1090/S0002-9939-97-04086-0
    • F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math. 12 (2002), 155-168.
    • F. Azarpanah, O. A. S. Karamzadeh and S. Rahmati, C(X) vs. C(X) modulo its socle, Colloq. Math. 3 (2008),315-336.
    • http://dx.doi.org/10.4064/cm111-2-9
    • P. Bhattacharjee, M. L. Knox and W. Wm. Mcgovern, The classical ring of quotients of $C_c(X)$, Appl. Gen. Topol.15, no. 2 (2014), 147-154.
    • http://dx.doi.org/10.4995/agt.2014.3181
    • O. Dovgoshey, O.Martio, V. Ryazanov and M. Vuorinen, The Cantor function, Expo. Math. 24 (2006), 1-37.
    • http://dx.doi.org/10.1016/j.exmath.2005.05.002
    • T. Dube, Contracting the Socle in Rings of Continuous Functions, Rend. Semin. Mat. Univ. Padova. 123 (2010), 37-53.
    • http://dx.doi.org/10.4171/RSMUP/123-2
    • R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.
    • A. A. Estaji and O. A. S. Karamzadeh, On C(X) modulo its socle, Comm. Algebra 31 (2003), 1561-1571.
    • http://dx.doi.org/10.1081/AGB-120018497
    • M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova, 129 (2013),...
    • http://dx.doi.org/10.4171/RSMUP/129-4
    • S. G. Ghasemzadeh, O. A. S. Karamzadeh and M. Namdari, The super socle of the ring of continuous functions, Mathematica Slovaka, to appear.
    • J. Hart and K. Kunen, Locally constant functions, Fund. Math. 150 (1996), 67-96.
    • M. Henriksen, R. Raphael and R. G. Woods, SP-scattered spaces; a new generalization of scattered spaces, Comment. Math. Univ. Carolin 48,...
    • O. A. S. Karamzadeh, On a question of Matlis, Comm. Algebra 25 (1997), 2717-2726.
    • http://dx.doi.org/10.1080/00927879708826017
    • O. A. S. Karamzadeh and A. A. Koochakpour, On $aleph_{_0}$-selfinjectivity of strongly regular rings, Comm. Algebra 27 (1999), 1501-1513.
    • http://dx.doi.org/10.1080/00927879908826510
    • O. A. S. Karamzadeh, M. Namdari and M. A. Siavoshi, A note on $lambda$-compact spaces, Math. Slovaca. 63, no. 6 (2013) 1371-1380.
    • http://dx.doi.org/10.2478/s12175-013-0177-3
    • O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184.
    • R. Levy and M. D. Rice, Normal P-spaces and the $G_delta$-topology, Colloq. Math. 47 (1981), 227-240.
    • M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66.
    • M. Namdari and A. Veisi, The subalgebra of $C_c(X)$ consisting of elements with countable image versus C(X) with respect to their rings of...
    • M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum, 7...
    • A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III), Studia Mathematica 18 (1959), 211-222.
    • M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.
    • http://dx.doi.org/10.1006/jfan.1995.1121
    • W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.
    • http://dx.doi.org/10.1090/S0002-9939-1957-0085475-7
    • D. Rudd, On two sum theorems for ideals of C(X), Michigan Math. J. 17 (1970), 139-141.
    • http://dx.doi.org/10.1307/mmj/1029000423

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno