Ir al contenido

Documat


Restricted Ornstein–Uhlenbeck process and applications in neuronal models with periodic input signals

  • A. Buonocore [1] ; L. Caputo [1] ; A.G. Nobile [2] ; E. Pirozzi [1]
    1. [1] Università di Napoli Federico II, Italy
    2. [2] Università di Salerno, Italy
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 285, Nº 1 (September 2015), 2015, págs. 59-71
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2015.01.042
  • Enlaces
  • Resumen
    • Restricted Gauss–Markov processes are used to construct inhomogeneous leaky integrate-and-fire stochastic models for single neurons activity in the presence of a lower reflecting boundary and periodic input signals. The first-passage time problem through a time-dependent threshold is explicitly developed; numerical, simulation and asymptotic results for firing densities are provided.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno