Ir al contenido

Documat


A Duality of Locally Compact Groups That Does Not Involve the Haar Measure

  • Autores: Yulia Kuznetsova
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 116, Nº 2, 2015, págs. 250-286
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-21162
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We present a simple and intuitive framework for duality of locally compacts groups, which is not based on the Haar measure. This is a map, functorial on a non-degenerate subcategory, on the category of coinvolutive Hopf $C^*$-algebras, and a similar map on the category of coinvolutive Hopf-von Neumann algebras. In the $C^*$-version, this functor sends $C_0(G)$ to $C^*(G)$ and vice versa, for every locally compact group $G$. As opposed to preceding approaches, there is an explicit description of commutative and co-commutative algebras in the range of this map (without assumption of being isomorphic to their bidual): these algebras have the form $C_0(G)$ or $C^*(G)$ respectively, where $G$ is a locally compact group. The von Neumann version of the functor puts into duality, in the group case, the enveloping von Neumann algebras of the algebras above: $C_0(G)^{**}$ and $C^*(G)^{**}$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno