Ir al contenido

Documat


Compactness of higher-order Sobolev embeddings

  • Autores: Lenka Slavíková
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 59, Nº 2, 2015, págs. 373-448
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT_59215_06
  • Enlaces
  • Resumen
    • We study higher-order compact Sobolev embeddings on a domain ∩ ⊆Rn endowed with a probability measure ∨ and satisfying certain isoperimetric inequality. Given m ∈ N, we present a condition on a pair of rearrangement-invariant spaces X( ∩,∨) and Y ( ∩,∨) which suffices to guarantee a compact embedding of the Sobolev space V m X ( ∩,∨) into Y (∩,∨). The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of ( ∩,∨). We then apply this result to the characterization of higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno