Ir al contenido

Documat


Tout chemin générique de hérissons réalisant un retournement de la sphère dans R3 comprend un hérisson porteur de queues d’aronde positives

  • Autores: Yves Martínez-Maure
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 59, Nº 2, 2015, págs. 339-351
  • Idioma: francés
  • DOI: 10.5565/PUBLMAT_59215_04
  • Enlaces
  • Resumen
    • Hedgehogs are (possibly singular and self-intersecting) hypersurfaces that describe Minkowski differences of convex bodies in Rn+1. They are the natural geometrical objects when one seeks to extend parts of the Brunn–Minkowski theory to a vector space which contains convex bodies. In this paper, we prove that in every generic path of hedgehogs performing the eversion of the sphere in R3, there exists a hedgehog that has positive swallowtails. This study was motivated by an open problem raised in 1985 by Langevin, Levitt, and Rosenberg.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno