Ir al contenido

Documat


On Estimating Quantiles Using Auxiliary Information

  • Berger, Yves G. [1] ; Munoz, Juan F. [2]
    1. [1] University of Southampton

      University of Southampton

      GB.ENG.M4.24UJ, Reino Unido

    2. [2] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: Journal of official statistics, ISSN 0282-423X, Vol. 31, Nº. 1, 2015, págs. 101-119
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We propose a transformation-based approach for estimating quantiles using auxiliary information. The proposed estimators can be easily implemented using a regression estimator. We show that the proposed estimators are consistent and asymptotically unbiased. The main advantage of the proposed estimators is their simplicity. Despite the fact the proposed estimators are not necessarily more efficient than their competitors, they offer a good compromise between accuracy and simplicity. They can be used under single and multistage sampling designs with unequal selection probabilities. A simulation study supports our finding and shows that the proposed estimators are robust and of an acceptable accuracy compared to alternative estimators, which can be more computationally intensive.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno