Ir al contenido

Documat


Invited paper: A Review of Thresheld Convergence

  • Stephen Chen [1] ; James Montgomery [2] ; Antonio Bolufé-Röhler [3] ; Yasser Gonzalez-Fernandez [1]
    1. [1] York University (Canadá)

      York University (Canadá)

      Canadá

    2. [2] University of Tasmania

      University of Tasmania

      Australia

    3. [3] Universidad de La Habana

      Universidad de La Habana

      Cuba

  • Localización: GECONTEC: revista Internacional de Gestión del Conocimiento y la Tecnología, ISSN-e 2255-5684, Vol. 3, Nº. 1, 2015, págs. 1-13
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A multi-modal search space can be defined as having multiple attraction basins – each basin has a single local optimum which is reached from all points in that basin when greedy local search is used. Optimization in multi-modal search spaces can then be viewed as a two-phase process. The first phase is exploration in which the most promising attraction basin is identified. The second phase is exploitation in which the best solution (i.e. the local optimum) within the previously identified attraction basin is attained. The goal of thresheld convergence is to improve the performance of search techniques during the first phase of exploration. The effectiveness of thresheld convergence has been demonstrated through applications to existing metaheuristics such as particle swarm optimization and differential evolution, and through the development of novel metaheuristics such as minimum population search and leaders and followers.

  • Referencias bibliográficas
    • Bolufé-Röhler, A. and Chen, S. (2013). Minimum population search – Lessons from building a heuristic technique with two population members....
    • Bolufé-Röhler, A. and Chen, S. (2014). Extending minimum population search towards large scale global optimization. IEEE CEC, p. 845–852.
    • Bolufé-Röhler, A., Estévez-Velarde, S., Piad-Morffis, A., Chen, S. and Montgomery, J. (2013). Differential evolution with thresheld convergence....
    • Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimization. IEEE SIS, p. 120–127.
    • Brits, R., Engelbrecht, A. P. and Van den Bergh, F. (2002). A niching particle swarm optimizer. SEAL, p. 692–696.
    • Chen, S. and Montgomery, J. (2011). A simple strategy to maintain diversity and reduce crowding in particle swarm optimization. Australasian...
    • Chen, S. and Montgomery, J. (2013). Particle swarm optimization with thresheld convergence. IEEE CEC, p. 510–516.
    • Chen, S., Xudiera, C. and Montgomery, J. (2012). Simulated annealing with thresheld convergence. IEEE CEC, p. 1946–1952.
    • De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems, PhD thesis. Dept. of Computer and Communication...
    • Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.
    • Gonzalez-Fernandez, Y. and Chen, S. (2014). Identifying and exploiting the scale of a search space in particle swarm optimization. GECCO,...
    • Gonzalez-Fernandez, Y. and Chen, S. Leaders and followers – A new metaheuristic to avoid the bias of accumulated information. IEEE CEC, in...
    • Hansen, N., Finck, S., Ros, R. and Auger, A. (2009). Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions....
    • Holland, J. (1992). Adaptation in Natural and Artificial Systems. MIT Press.
    • Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. IEEE ICNN, p. 1942–1948.
    • Kirkpatrick, S., Gelatt, Jr., C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, Vol. 220, May, p. 671–680.
    • Liang, J. J., Qu, B. Y., Suganthan, P. N. and Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special...
    • Lones, A. (2014). Metaheuristics in nature-inspired algorithms. GECCO companion, p. 1419–1422.
    • Montgomery, J. (2009). Differential evolution: Difference vectors and movement in solution space. IEEE CEC, p. 2833–2840.
    • Montgomery, J. and Chen, S. (2012). A simple strategy for maintaining diversity and reducing crowding in differential evolution. IEEE CEC,...
    • Montgomery, J., Chen, S. and Gonzalez-Fernandez, Y. (2014). Identifying and exploiting the scale of a search space in differential evolution....
    • Piad-Morffis, A., Estévez-Velarde, S., Bolufé-Röhler, A., Montgomery, J. and Chen, S. Evolution strategies with thresheld convergence. IEEE...
    • Storn, R. and Price, H. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces....
    • Talbi, G. (2009). Metaheuristics: From design to implementation. Wiley.
    • Wolpert, D. H. and Macready W. G. (1997). No free lunch theorems for optimization. IEEE TEC, Vol. 1, Apr., p. 67–82.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno