Ir al contenido

Documat


Lyapunov exponent and almost sure asymptotic stability of a stochastic SIRS model

  • Autores: Guoting Chen, Tiecheng Li, Changjian Liu
  • Localización: Publicacions matematiques, ISSN 0214-1493, Nº. Extra 0 (Proceedings of the Conference “New Trends in Dynamical Systems” held in Salou (Tarragona), Spain, 1-), 2014, págs. 153-165
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT_Extra14_08
  • Enlaces
  • Resumen
    • Epidemiological models with bilinear incidence rate usually have an asymptotically stable trivial equilibrium corresponding to the disease-free state, or an asymptotically stable nontrivial equilibrium (i. e. interior equilibrium) corresponding to the endemic state. In this paper, we consider an epidemiological model, which is a SIRS (susceptible-infected-removed-susceptible) model in uenced by random perturbations. We prove that the solutions of the system are positive for all positive initial conditions and that the solutions are global, that is, there is no finite explosion time. We present necessary and suficient condition for the almost sure asymptotic stability of the steady state of the stochastic system.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno