Ir al contenido

Documat


A mathematical programming approach for different scenarios of bilateral bartering

  • Stefano Nasini [1] ; Jordi Castro [1] ; Pau Fonseca [1]
    1. [1] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 39, Nº. 1, 2015, págs. 85-108
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The analysis of markets with indivisible goods and fixed exogenous prices has played an impor- tant role in economic models, especially in relation to wage rigidity and unemployment. This paper provides a novel mathematical programming based approach to study pure exchange economies where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consist- ing in sequences of elementary reallocations of couple of commodities among couples of agents, are formalized as local searches converging to equilibrium allocations. A direct application of the analysed processes in the context of computational economics is provided, along with a Java implementation of the described approaches.

  • Referencias bibliográficas
    • Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1991). Network Flows: Theory, Algorithms, and Applications. (1st ed.). Englewood Cliffs, Prentice-Hall.
    • Arrow, K. J. and Debreu, G. (1983). Existence of an equilibrium for a competitive economy. Econometrica, 22, 265–290.
    • Auman R. and Dreze, J. (1986). Values of Markets with Satiation or fixed prices. Econometrica, 54, 1271– 1318.
    • Axtell, R. (2005). The complexity of exchange. In Working Notes: Artificial Societies and Computational Markets. Autonomous Agents 98 Workshop,...
    • Bell, A.M. (1998). Bilateral trading on network: a simulation study. In Working Notes: Artificial Societies and Computational Markets. Autonomous...
    • Caplin A. and Leahy, J. (2010). A graph theoretic approach to markets for indivisible goods. Mimeo, New York University, NBER Working Paper...
    • Corley, H.W. and Moon, I.D. (1985). Shortest path in network with vector weights. Journal of Optimization Theory and Applications, 46, 79–86.
    • Danilov, V., Koshevoy, G. and Murota, K. (2001). Discrete convexity and equilibria in economies with indivisible goods and money. Journal...
    • Dreze, J. (1975). Existence of an exchange equilibrium under price rigidities. International Economic Review, 16, 2, 301–320.
    • Edgeworth, F.Y. (1932). Mathematical psychics, an essay on the application of mathematics to the moral sciences, (3th ed.). L.S.E. Series...
    • Feldman, A. (1973). Bilateral trading processes, pairwise optimality, and Pareto optimality. Review of Economic Studies, XL(4) 463–473.
    • Haimes, Y.Y., Lasdon, L.S. and Wismer, D.A. (1971). On a bicriterion formulation of the problems of integrated system identification and system...
    • Jevons, W.S. (1888). The Theory of Political Economy, (3rd ed.). London, Macmillan.
    • Kaneko, M. (1982). The central assignment game and the assignment markets. Journal of Mathematical Economics, 10, 205–232.
    • Nash, J.F. (1951). The bargaining problem. Econometrica 18, 155–162.
    • Ozlen, M. and Azizoglu, M. (2009). Multi-objective integer programming: a general approach for generating all non-dominating solutions. European...
    • Ozlen, M., Azizoglu, M. and Burton, B.A. (Accepted 2012). Optimising a nonlinear utility function inmultiobjective integer programming. Journal...
    • Quinzii, M. (1984). Core and competitive equilibria with indivisibilities. International Journal of Game Theory, 13, 41–60.
    • Rubinstein, A. (1983). Perfect equilibrium in a bargaining model. Econometrica, 50, 97–109.
    • Sastry, V.N. and Mohideen, S.I. (1999). Modified algorithm to compute Pareto-optimal vectors. Journal of Optimization Theory and Applications,...
    • Scarf, H. (1994). The allocation of resources in the presence of indivisibilitie. Journal of Economic Perspectives, 8, 111–128.
    • Shapley, L. and Shubik, M. (1972). The assignment game I: the core. International Journal of Game Theory, 1, 111–130.
    • Uzawa, H. (1962). On the stability of edgeworth’s barter process. International Economic Review, 3(2), 218–232.
    • Vazirani, V.V., Nisan, N., Roughgarden, T. and Tardos, E. (2007). Algorithmic Game Theory, (1st ed.). Cambridge, Cambridge University Press.
    • Wilhite, A. (2001). Bilateral trade and small-worl-networks. Computational Economics, 18, 49–44.
    • Wooldridge, M. (2002). An Introduction to MultiAgent Systems, (1st ed.). Chichester, UK, John Wiley and Sons Ltd.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno