Ir al contenido

Documat


Equivalent groupoids have Morita equivalent Steinberg algebras

  • Lisa Orloff Clark [1] ; Aidan Sims [2]
    1. [1] University of Otago

      University of Otago

      Nueva Zelanda

    2. [2] University of Wollongong

      University of Wollongong

      Australia

  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 219, Nº 6 (June 2015), 2015, págs. 2062-2075
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2014.07.023
  • Enlaces
  • Resumen
    • Let G and H be ample groupoids and let R be a commutative unital ring. We show that if G and H are equivalent in the sense of Muhly–Renault–Williams, then the associated Steinberg algebras are Morita equivalent. We deduce that collapsing a “collapsible subgraph” of a directed graph in the sense of Crisp and Gow does not change the Morita-equivalence class of the associated Leavitt path R -algebra, and therefore a number of graphical constructions which yield Morita equivalent C⁎-algebras also yield Morita equivalent Leavitt path algebras.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno