Ir al contenido

Documat


Polyhedral divisors and torus actions of complexity one over arbitrary fields

  • Kevin Langlois [1]
    1. [1] Université Grenoble I, France
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 219, Nº 6 (June 2015), 2015, págs. 2015-2045
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2014.07.021
  • Enlaces
  • Resumen
    • We show that the presentation of affine TT-varieties of complexity one in terms of polyhedral divisors holds over an arbitrary field. We also describe a class of multigraded algebras over Dedekind domains. We study how the algebra associated with a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine G-varieties of complexity one over a field, where G is a (not necessarily split) torus, by using elementary facts on Galois descent. This class of affine G-varieties is described via a new combinatorial object, which we call (Galois) invariant polyhedral divisor.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno