Ir al contenido

Documat


Measuring the range of an additive Lévy process

  • Davar Khoshnevisan [1] ; Yimin Xiao [2] ; Yuquan Zhong [3]
    1. [1] University of Utah

      University of Utah

      Estados Unidos

    2. [2] Michigan State University

      Michigan State University

      City of East Lansing, Estados Unidos

    3. [3] Academia Sinica

      Academia Sinica

      Taiwán

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 31, Nº. 2, 2003, págs. 1097-1141
  • Idioma: inglés
  • DOI: 10.1214/aop/1048516547
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The primary goal of this paper is to study the range of the random field X(t)=∑Nj=1Xj(tj), where X1,…,XN\vspace*{-1pt} are independent Lévy processes in \Rd.

      To cite a typical result of this paper, let us suppose that Ψi denotes the Lévy exponent of Xi for each i=1,…,N. Then, under certain mild conditions, we show that a necessary and sufficient condition for X(\RN+) to have positive d-dimensional Lebesgue measure is the integrability of the function \Rd∋ξ↦∏Nj=1R{1+Ψj(ξ)}−1. This extends a celebrated result of Kesten and of Bretagnolle in the one-parameter setting. Furthermore, we show that the existence of square integrable local times is yet another equivalent condition for the mentioned integrability criterion. This extends a theorem of Hawkes to the present random fields setting and completes the analysis of local times for additive Lévy processes initiated in a companion by paper Khoshnevisan, Xiao and Zhong.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno