Ir al contenido

Documat


Second phase changes in random m-ary search trees and generalized quicksort: Convergence rates

  • Hsien-Kuei Hwang [1]
    1. [1] Academia Sinica

      Academia Sinica

      Taiwán

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 31, Nº. 2, 2003, págs. 609-629
  • Idioma: inglés
  • DOI: 10.1214/aop/1048516530
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the convergence rate to normal limit law for the space requirement of random m-ary search trees. While it is known that the random variable is asymptotically normally distributed for 3≤m≤26 and that the limit law does not exist for m>26, we show that the convergence rate is O(n−1/2) for 3≤m≤19 and is O(n−3(3/2−α)), where 4/3<α<3/2 is a parameter depending on m for 20≤m≤26. Our approach is based on a refinement to the method of moments and applicable to other recursive random variables; we briefly mention the applications to quicksort proper and the generalized quicksort of Hennequin, where more phase changes are given. These results provide natural, concrete examples for which the Berry--Esseen bounds are not necessarily proportional to the reciprocal of the standard deviation. Local limit theorems are also derived.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno