Ir al contenido

Documat


On asymptotic errors in discretization of processes

  • J. Jacod [1] ; A. Jakubowski [3] ; J. Mémin [2]
    1. [1] Laboratoire d'informatique de Paris 6

      Laboratoire d'informatique de Paris 6

      París, Francia

    2. [2] University of Rennes 1

      University of Rennes 1

      Arrondissement de Rennes, Francia

    3. [3] Nicholas Copernicus University
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 31, Nº. 2, 2003, págs. 592-608
  • Idioma: inglés
  • DOI: 10.1214/aop/1048516529
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the rate at which the difference Xnt=Xt−X[nt]/n between a process X and its time-discretization converges. When X is a continuous semimartingale it is known that, under appropriate assumptions, the rate is n√, so we focus here on the discontinuous case. Then αnXn explodes for any sequence αn going to infinity, so we consider "integrated errors'' of the form Ynt=∫t0Xnsds or Zn,pt=∫t0|Xns|pds for p∈(0,∞): we essentially prove that the variables sups≤t|nYns| and sups≤tnZn,ps are tight for any finite t when X is an arbitrary semimartingale, provided either p≥2 or\break p∈(0,2) and X has no continuous martingale part and the sum ∑s≤t|ΔXs|p converges a.s. for all t<∞, and in addition X is the sum of its jumps when p<1. Under suitable additional assumptions, we even prove that the discretized processes nYn[nt]/n and nZn,p[nt]/n\vadjust{\vspace{1pt}} converge in law to nontrivial processes which are explicitly given.

      As a by-product, we also obtain a generalization of Itö's formula for functions that are not twice continuously differentiable and which may be of interest by itself.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno