Ir al contenido

Documat


Métodos de inferencia estadística para entrenamiento de modelos ocultos de Markov

  • Mendoza León, Ricardo Antonio [1]
    1. [1] Politécnico Grancolombiano

      Politécnico Grancolombiano

      Colombia

  • Localización: Elementos, ISSN-e 2248-5252, Vol. 1, Nº. 1, 2011 (Ejemplar dedicado a: Elementos), págs. 57-70
  • Idioma: español
  • DOI: 10.15765/e.v1i1.191
  • Enlaces
  • Resumen
    • Este documento presenta una revisión general de las diferentes aproximaciones y métodos en inferencia estadística, aplicados al problema de entrenamiento o ajuste de parámetros en Modelos Ocultos de Markov. Se tratarán los algoritmos EM (Expectation Maximization) y GEM (Generalized Expectation Maximization), el marco de modelos gráficos y sus algoritmos ML (Maximum Likelihood) y MAP (Maximum a Posteriori), así como modelos de conjunto, variacionales y métodos de muestreo MCMC (Markov Chain Montecarlo).

  • Referencias bibliográficas
    • Baldi, P., Chauvin, Y.: Smooth On-Line Learning Algorithms for Hidden Markov Models. Neural Cornputation 6, 307-318. (1994)
    • Baldi, P., Brunak, S.: Bioinformatics: the machine learning approach. Boston: MIT Press. (2001)
    • Baum, L. E., Petrie, Soules, G., Weiss, N.: “A maximization technique occurring in the statistical analysis of probabilistic functions of...
    • Beal, M. J., Ghahramani, Z., and Rasmussen, C. E.: The infinite hidden Markov model. Advances in Neural Information Processing Systems, volume...
    • Bengio, Y., Frasconi P.: Input/Output HMMs for sequence processing. IEEE Transactions on Neural Networks 7(5), 1231-1249. (1996)
    • Bilmes, J. A.: A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden markov models....
    • Bishop, C. M.: Pattern Recognition and Machine Learning. New York: Springer. (2006)
    • Blanchet, J., Vignes, M.: A Model-Based Approach to Gene Clustering with Missing Observation Reconstruction in a Markov Random Field Framework....
    • Boufounos, P., El-Difrawy, S., Ehrlich, D.: Hidden Markov Models for DNA Sequencing. Proceedings of Workshop on Genomic Signal Processing...
    • Cappé, O., Moulines, E. and Rydén, T.: Inference in Hidden Markov Models. New York: Springer. (2005)
    • Chu, W., Ghahramani, Z., Wild, D.: A graphical model for protein secondary structure prediction. En Proc. 21st Ann. Intl. Conf. on Machine...
    • Davis, R., Lovell, B. C.: Comparing and evaluating hmm ensemble training algorithms using train and test and condition number criteria. Pattern...
    • Dempster, A. P, Laird, N. M., Rubin, D. B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical...
    • Elliott, R. J., Aggoun, L., Moore, J. B.: Hidden Markov Models Estimation and Control., 3ed. New York: Springer. (2008)
    • Ephraim, Y., Neri Merhav, N.: Hidden Markov Processes. IEEE Transactions on Information Theory, Vol. 48, No. 6. (2006).
    • Ghahramani, Z.: Graphical models: parameter learning. En Arbib, M. A. (Ed). The Handbook of Brain Theory and Neural Networks. Cambridge, MA:...
    • Ghahramani, Z., M. Beal.: Graphical Models and Variational Methods. En M. Opper and D. Saad (Ed). Advanced Mean Field Methods - Theory and...
    • Heo, G., Woo, Y. W., Kim, K. B.: Properties of Ensemble Learning for Discrete Hidden Markov Models and Updating Prior Strategy. (2007)
    • Jaakkola, T. S.: Tutorial on variational approximation methods. En Advanced mean field methods. Cambridge, MA: MIT Press. (2001)
    • Jalen, L.: Some contributions to filtering theory with applications in financial modelling. Tesis Doctoral, Brunel University. (2009)
    • Jianfeng, G., Johnson, M.: A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers. En Proceedings of the 2008...
    • Jiao, F.: Probabilistic Graphical Models and Algorithms for Protein Problems. Tesis Doctoral, University of Waterloo. (2007)
    • Jordan, M., Ghahramani, Z., Jaakkola, T. S., Saul, L.: An introduction to variational methods for graphical models. En Learning in graphical...
    • Jordan, M. I.: (Ed). Learning in Graphical Models. Cambridge, MA: MIT Press. (1999)
    • Jordan, M. I.: Graphical models, exponential families, and variational inference. UC Berkeley Dept. of Statistics, Tech. Rep. 629. (2003)
    • Jordan, M. I.: Graphical Models. Statist. Sci., 19, 140-155. (2004)
    • Ko, A. H. R., Sabourin, R., Britto A. Jr.: Ensemble of HMM classifiers based on the Clustering Validity Index for a Handwritten Numeral Recognizer....
    • Lauritzen, S. L.: Graphical Models. Oxford Science Publications. (1996)
    • Lawrence, N. D.: Variational inference guide. Technical report, The University Of Sheffield Machine Learning Group. (2002)
    • Lesk, A. M.: Introduction to Bioinformatics. New York: Oxford University Press Inc. (2002)
    • Liang, K., Wang, X., Anastassiou, D.: Bayesian Basecalling for DNA Sequence Analysis Using Hidden Markov Models. En IEEE/ACM Transactions...
    • Liang, K., Nettleton, D.: A Hidden Markov Model Approach to Testing Multiple Hypotheses on a Gene Ontology Graph. Dep. of Stat. Iowa State...
    • Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm. Mach. Learning 2, 2, 285-318. (1988)
    • Littlestone, N., Warmuth, M. K.: The Weighted Majority algorithm. Information and Computation, 108, 212-261. (1994)
    • McGrory C. A., Titterington, D. M.: Variational Bayesian Analysis for Hidden Markov Models. En Australian & New Zealand J. of Stat. Vol,...
    • McKay, D. J. C.: Ensemble learning for hidden Markov models. Technical report, Cavendish Laboratory, University of Cambridge. (1997)
    • McKay, D. J. C.: Information Theory, Inference and Learning Algorithms. New York: Springer (2000)
    • McLachlan, G., Krishnan, T.: The EM Algorithm and Extension. New York: John Wiley and Sons. (1997)
    • Rabiner, L. R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257-286. (1989)
    • Rabiner, L., Juang, B. H.: Fundamentals of Speech Recognition. Prentice Hall Signal Processing Series. New Jersey: Prentice Hall. (1993)
    • Seligmann, C.: Uso de Modelos Escondidos de Markov en Biología Molecular Computacional., Poliantea No 9, Bogotá: Politécnico Grancolombiano....
    • Shinozaki, T., Furui, S.: Hidden mode HMM using bayesian network for modeling speaking rate fluctuation. Proc. of ASRU, (US Virgin Islands),...
    • Smyth, P., Heckerman, D., Jordan, M. I.: Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9(2),...
    • Song, J., Liu, C., Song, Y., Qu, J., Hura, G. S.: Alignment of multiple proteins with an ensemble of Hidden Markov Models. International Journal...
    • Stroock, D. W.: An Introduction to Markov Processes, Berlin: Springer. (2005)
    • Tusnády, G. E., Simon, I.: Principles Governing Amino Acid Composition of Integral Membrane Proteins: Application to Topology Prediction....
    • Viterbi, A. J.: Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions on Information Theory,...
    • Werner M. J., Ide, K., Sornette, D.: Earthquake Forecasting Based on Data Assimi- lation: Sequential Monte Carlo Methods for Renewal Processes....
    • Wu, C. EJ.: On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95-103. (1983).
    • Zhang, J., Ghahramani, Z., Yang, Y.: Learning Multiple Related Tasks using Latent Independent Component Analysis. Proceedings of NIPS 2005,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno