Ir al contenido

Documat


Large Deviations for random power moment problem

  • Fabrice Gamboa [1] ; Li-Vang Lozada-Chang [2]
    1. [1] Paul Sabatier University

      Paul Sabatier University

      Arrondissement de Toulouse, Francia

    2. [2] Universidad de La Habana

      Universidad de La Habana

      Cuba

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 3, 2, 2004, págs. 2819-2837
  • Idioma: inglés
  • DOI: 10.1214/009117904000000559
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider the set Mn of all n-truncated power moment sequences of probability measures on [0,1]. We endow this set with the uniform probability. Picking randomly a point in Mn, we show that the upper canonical measure associated with this point satisfies a large deviation principle. Moderate deviation are also studied completing earlier results on asymptotic normality given by Chang, Kemperman and Studden [Ann. Probab. 21 (1993) 1295–1309]. Surprisingly, our large deviations results allow us to compute explicitly the (n+1)th moment range size of the set of all probability measures having the same n first moments. The main tool to obtain these results is the representation of Mn on canonical moments [see the book of Dette and Studden].


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno