Ir al contenido

Documat


Weighted uniform consistency of kernel density estimators

  • Evarist Giné [1] ; Vladimir Koltchinskii [2] ; Joel Zinn [3]
    1. [1] University of Connecticut

      University of Connecticut

      Town of Mansfield, Estados Unidos

    2. [2] University of New Mexico

      University of New Mexico

      Estados Unidos

    3. [3] A&M University
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 3, 2, 2004, págs. 2570-2605
  • Idioma: inglés
  • DOI: 10.1214/009117904000000063
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let Ψ(t) be a positive continuous function such that ‖Ψfβ‖∞<∞ for some 0<β<1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence ${\sqrt{\frac{nh_{n}^{d}}{2|\log h_{n}^{d}|}}\|\Psi(t)(f_{n}(t)-Ef_{n}(t))\|_{\infty}}$ to be stochastically bounded and to converge a.s. to a constant are obtained. Also, the case of larger values of β is studied where a similar sequence with a different norming converges a.s. either to 0 or to +∞, depending on convergence or divergence of a certain integral involving the tail probabilities of Ψ(X). The results apply as well to some discontinuous not strictly positive densities.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno