Ir al contenido

Documat


Trimmed trees and embedded particle systems

  • Klaus Fleischmann [1] ; Jan M. Swart [2]
    1. [1] Weierstrass Institute for Applied Analysis and Stochastics

      Weierstrass Institute for Applied Analysis and Stochastics

      Berlin, Stadt, Alemania

    2. [2] University of Erlangen-Nuremberg

      University of Erlangen-Nuremberg

      Kreisfreie Stadt Erlangen, Alemania

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 3, 1, 2004, págs. 2179-2221
  • Idioma: inglés
  • DOI: 10.1214/009117904000000090
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In a supercritical branching particle system, the trimmed tree consists of those particles which have descendants at all times. We develop this concept in the superprocess setting. For a class of continuous superprocesses with Feller underlying motion on compact spaces, we identify the trimmed tree, which turns out to be a binary splitting particle system with a new underlying motion that is a compensated h-transform of the old one. We show how trimmed trees may be estimated from above by embedded binary branching particle systems.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno