Ir al contenido

Documat


Limit theorems for a class of identically distributed random variables

  • Patrizia Berti [3] ; Luca Pratelli [1] ; Pietro Rigo [2]
    1. [1] Accademia Navale di Livorno
    2. [2] Universita' di Pavia
    3. [3] Universita' di Modena e Reggio-Emilia
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 3, 1, 2004, págs. 2029-2052
  • Idioma: inglés
  • DOI: 10.1214/009117904000000676
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A new type of stochastic dependence for a sequence of random variables is introduced and studied. Precisely, (Xn)n≥1 is said to be conditionally identically distributed (c.i.d.), with respect to a filtration $(\mathcal{G}_{n})_{n\geq 0}$ , if it is adapted to $(\mathcal{G}_{n})_{n\geq 0}$ and, for each n≥0, (Xk)k>n is identically distributed given the past $\mathcal{G}_{n}$ . In case $\mathcal{G}_{0}=\{\varnothing,\Omega\}$ and $\mathcal{G}_{n}=\sigma(X_{1},\ldots,X_{n})$ , a result of Kallenberg implies that (Xn)n≥1 is exchangeable if and only if it is stationary and c.i.d. After giving some natural examples of nonexchangeable c.i.d. sequences, it is shown that (Xn)n≥1 is exchangeable if and only if (Xτ(n))n≥1 is c.i.d. for any finite permutation τ of {1,2,…}, and that the distribution of a c.i.d. sequence agrees with an exchangeable law on a certain sub-σ-field. Moreover, (1/n)∑k=1nXk converges a.s. and in L1 whenever (Xn)n≥1 is (real-valued) c.i.d. and E[|X1|]<∞. As to the CLT, three types of random centering are considered. One such centering, significant in Bayesian prediction and discrete time filtering, is $E[X_{n+1}\vert \mathcal{G}_{n}]$ . For each centering, convergence in distribution of the corresponding empirical process is analyzed under uniform distance.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno