Ir al contenido

Documat


The shattering dimension of sets of linear functionals

  • Shahar Mendelson [1] ; Gideon Schechtman [2]
    1. [1] Australian National University

      Australian National University

      Australia

    2. [2] Weizmann Institute
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 3, 1, 2004, págs. 1746-1770
  • Idioma: inglés
  • DOI: 10.1214/009117904000000388
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We evaluate the shattering dimension of various classes of linear functionals on various symmetric convex sets. The proofs here relay mostly on methods from the local theory of normed spaces and include volume estimates, factorization techniques and tail estimates of norms, viewed as random variables on Euclidean spheres. The estimates of shattering dimensions can be applied to obtain error bounds for certain classes of functions, a fact which was the original motivation of this study. Although this can probably be done in a more traditional manner, we also use the approach presented here to determine whether several classes of linear functionals satisfy the uniform law of large numbers and the uniform central limit theorem.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno