Ir al contenido

Documat


Hermitian approximation of the spherical divergence on the Cubed-Sphere

  • Jean-Pierre Croisille [1]
    1. [1] University of Lorraine

      University of Lorraine

      Arrondissement de Nancy, Francia

  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 280, Nº 1 (15 May 2015), 2015, págs. 188-201
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.11.047
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Previous work (Croisille, 2013) showed that the Cubed-Sphere grid offers a suitable discrete framework for extending Hermitian compact operators (Collatz, 1960) to the spherical setup. In this paper we further investigate the design of high-order accurate approximations of spherical differential operators on the Cubed-Sphere with an emphasis on the spherical divergence of a tangent vector field. The basic principle of this approximation relies on evaluating pointwise Hermitian derivatives along a series of great circles covering the sphere. Several test-cases demonstrate the very good accuracy of the approximate spherical divergence calculated with the new scheme.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno