Ir al contenido

Documat


Casoratian identities for the Wilson and Askey–Wilson polynomials

  • Satoru Odake [1] ; Ryu Sasaki [1]
    1. [1] Shinshu University

      Shinshu University

      Japón

  • Localización: Journal of approximation theory, ISSN 0021-9045, Vol. 193, Nº 1 (May 2015), 2015, págs. 184-209
  • Idioma: inglés
  • DOI: 10.1016/j.jat.2014.04.009
  • Enlaces
  • Resumen
    • Infinitely many Casoratian identities are derived for the Wilson and Askey–Wilson polynomials in parallel to the Wronskian identities for the Hermite, Laguerre and Jacobi polynomials, which were reported recently by the present authors. These identities form the basis of the equivalence between eigenstate adding and deleting Darboux transformations for solvable (discrete) quantum mechanical systems. Similar identities hold for various reduced form polynomials of the Wilson and Askey–Wilson polynomials, e.g. the continuous q-Jacobi, continuous (dual) (q-)Hahn, Meixner–Pollaczek, Al-Salam–Chihara, continuous (big) q-Hermite, etc.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno