Ir al contenido

Documat


Spectral theory of G-symmetric tridiagonal matrices related to Stahl’s counterexample

  • Maxim Derevyagin [1]
    1. [1] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

  • Localización: Journal of approximation theory, ISSN 0021-9045, Vol. 191, Nº 1 (March 2015), 2015, págs. 58-70
  • Idioma: inglés
  • DOI: 10.1016/j.jat.2014.04.005
  • Enlaces
  • Resumen
    • We recast Stahl’s counterexample from the point of view of the spectral theory of the underlying non-symmetric Jacobi matrices. In particular, it is shown that these matrices are self-adjoint and non-negative in a Krein space and have empty resolvent sets. In fact, the technique of Darboux transformations (aka commutation methods) on spectra which is used in the present paper allows us to treat the class of all GG-non-negative tridiagonal matrices. We also establish a correspondence between this class of matrices and the class of signed measures with one sign change. Finally, it is proved that the absence of the spurious pole at infinity for Padé approximants is equivalent to the definitizability of the corresponding tridiagonal matrix.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno