Valencia, España
The aim of this paper is to prove the following result: let π be a set of odd primes. If the finite group G=AB is a product of two π-decomposable subgroups A=Oπ(A)×Oπ′(A) and B=Oπ(B)×Oπ′(B), then Oπ(A)Oπ(B)=Oπ(B)Oπ(A) and this is a Hall π-subgroup of G.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados