Ir al contenido

Documat


Large deviations for random walk in random environment with holding times

  • Amir Dembo [2] ; Nina Gantert [3] ; Ofer Zeitouni [1]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    2. [2] Standford University
    3. [3] Universität Karlsruhe
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 32, Nº. 1, 2, 2004, págs. 996-1029
  • Idioma: inglés
  • DOI: 10.1214/aop/1079021470
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Suppose that the integers are assigned the random variables {ωx,μx} (taking values in the unit interval times the space of probability measures on \reals+), which serve as an environment. This environment defines a random walk {Xt} (called a RWREH) which, when at x, waits a random time distributed according to μx and then, after one unit of time, moves one step to the right with probability ωx, and one step to the left with probability 1−ωx. We prove large deviation principles for Xt/t, both quenched (i.e., conditional upon the environment), with deterministic rate function, and annealed (i.e., averaged over the environment). As an application, we show that for random walks on Galton--Watson trees, quenched and annealed rate functions along a ray differ.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno