Ir al contenido

Documat


Discrete Hessian Eigenmaps method for dimensionality reduction

  • Qiang Ye [1] ; Weifeng Zhi [2]
    1. [1] University of Kentucky

      University of Kentucky

      Estados Unidos

    2. [2] University of California
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 278, Nº 1 (15 April 2015), 2015, págs. 197-212
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.09.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For a given set of data points lying on a low-dimensional manifold embedded in a high-dimensional space, the dimensionality reduction is to recover a low-dimensional parametrization from the data set. The recently developed Hessian Eigenmaps method is a mathematically rigorous method that also sets a theoretical framework for the nonlinear dimensionality reduction problem. In this paper, we develop a discrete version of the Hessian Eigenmaps method and present an analysis, giving conditions under which the method works as intended. As an application, a procedure to modify the standard constructions of kk-nearest neighborhoods is presented to ensure that Hessian LLE can recover the original coordinates up to an affine transformation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno