Ir al contenido

Documat


Noncommutative Bennett and Rosenthal inequalities

  • Marius Junge [1] ; Qiang Zeng [1]
    1. [1] University of Illinois at Urbana Champaign

      University of Illinois at Urbana Champaign

      Township of Cunningham, Estados Unidos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 6, 2013, págs. 4287-4316
  • Idioma: inglés
  • DOI: 10.1214/12-AOP771
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we extend the Bernstein, Prohorov and Bennett inequalities to the noncommutative setting. In addition we provide an improved version of the noncommutative Rosenthal inequality, essentially due to Nagaev, Pinelis and Pinelis, Utev for commutative random variables. We also present new best constants in Rosenthal’s inequality. Applying these results to random Fourier projections, we recover and elaborate on fundamental results from compressed sensing, due to Candes, Romberg and Tao.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno