Ir al contenido

Documat


Complexity of random smooth functions on the high-dimensional sphere

  • Antonio Auffinger [1] ; Gerard Ben Arous [2]
    1. [1] University of Chicago

      University of Chicago

      City of Chicago, Estados Unidos

    2. [2] New York University

      New York University

      Estados Unidos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 6, 2013, págs. 4214-4247
  • Idioma: inglés
  • DOI: 10.1214/13-AOP862
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We analyze the landscape of general smooth Gaussian functions on the sphere in dimension N, when N is large. We give an explicit formula for the asymptotic complexity of the mean number of critical points of finite and diverging index at any level of energy and for the mean Euler characteristic of level sets. We then find two possible scenarios for the bottom landscape, one that has a layered structure of critical values and a strong correlation between indexes and critical values and another where even at levels below the limiting ground state energy the mean number of local minima is exponentially large. We end the paper by discussing how these results can be interpreted in the language of spin glasses models.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno