Ir al contenido

Documat


Convergence to the equilibria for self-stabilizing processes in double-well landscape

  • Julian Tugaut [1]
    1. [1] Bielefeld University

      Bielefeld University

      Kreisfreie Stadt Bielefeld, Alemania

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 3, 1, 2013, págs. 1427-1460
  • Idioma: inglés
  • DOI: 10.1214/12-AOP749
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate the convergence of McKean–Vlasov diffusions in a nonconvex landscape. These processes are linked to nonlinear partial differential equations. According to our previous results, there are at least three stationary measures under simple assumptions. Hence, the convergence problem is not classical like in the convex case. By using the method in Benedetto et al. [J. Statist. Phys. 91 (1998) 1261–1271] about the monotonicity of the free-energy, and combining this with a complete description of the set of the stationary measures, we prove the global convergence of the self-stabilizing processes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno