Ir al contenido

Documat


Sharp metastability threshold for an anisotropic bootstrap percolation model

  • H. Duminil-Copin [1] ; A. C. D. Van Enter [2]
    1. [1] Université de Genève

      Université de Genève

      Genève, Suiza

    2. [2] University of Groningen

      University of Groningen

      Países Bajos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 3, 1, 2013, págs. 1218-1242
  • Idioma: inglés
  • DOI: 10.1214/11-AOP722
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Bootstrap percolation models have been extensively studied during the two past decades. In this article, we study the following “anisotropic” bootstrap percolation model: the neighborhood of a point (m,n) is the set {(m+2,n),(m+1,n),(m,n+1),(m−1,n),(m−2,n),(m,n−1)}.

      At time 0, sites are occupied with probability p. At each time step, sites that are occupied remain occupied, while sites that are not occupied become occupied if and only if three of more sites in their neighborhood are occupied. We prove that it exhibits a sharp metastability threshold. This is the first mathematical proof of a sharp threshold for an anisotropic bootstrap percolation model.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno