Ir al contenido

Documat


Harmonic maps on amenable groups and a diffusive lower bound for random walks

  • Autores: James R. Lee, Yuval Peres
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 5, 2013, págs. 3392-3419
  • Idioma: inglés
  • DOI: 10.1214/12-AOP779
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove diffusive lower bounds on the rate of escape of the random walk on infinite transitive graphs. Similar estimates hold for finite graphs, up to the relaxation time of the walk. Our approach uses nonconstant equivariant harmonic mappings taking values in a Hilbert space. For the special case of discrete, amenable groups, we present a more explicit proof of the Mok–Korevaar–Schoen theorem on the existence of such harmonic maps by constructing them from the heat flow on a Følner set.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno