Ir al contenido

Documat


Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift

  • Autores: Giuseppe Da Prato Árbol académico, Franco Flandoli, E. Priola, M. Roeckner
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 5, 2013, págs. 3306-3344
  • Idioma: inglés
  • DOI: 10.1214/12-AOP763
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov’s fundamental result on Rd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin–Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno