Ir al contenido

Documat


Distance covariance in metric spaces

  • Autores: Russell Lyons
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 5, 2013, págs. 3284-3305
  • Idioma: inglés
  • DOI: 10.1214/12-AOP803
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We extend the theory of distance (Brownian) covariance from Euclidean spaces, where it was introduced by Székely, Rizzo and Bakirov, to general metric spaces. We show that for testing independence, it is necessary and sufficient that the metric space be of strong negative type. In particular, we show that this holds for separable Hilbert spaces, which answers a question of Kosorok. Instead of the manipulations of Fourier transforms used in the original work, we use elementary inequalities for metric spaces and embeddings in Hilbert spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno