Ir al contenido

Documat


A multivariate Gnedenko law of large numbers

  • Autores: Daniel Fresen
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 5, 2013, págs. 3051-3080
  • Idioma: inglés
  • DOI: 10.1214/12-AOP804
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that the convex hull of a large i.i.d. sample from an absolutely continuous log-concave distribution approximates a predetermined convex body in the logarithmic Hausdorff distance and in the Banach–Mazur distance. For log-concave distributions that decay super-exponentially, we also have approximation in the Hausdorff distance. These results are multivariate versions of the Gnedenko law of large numbers, which guarantees concentration of the maximum and minimum in the one-dimensional case.

      We provide quantitative bounds in terms of the number of points and the dimension of the ambient space.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno