Ir al contenido

Documat


Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees

  • Autores: Louigi Addario-Berry, Luc Devroye Árbol académico, Svante Janson
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 2, 2013, págs. 1072-1087
  • Idioma: inglés
  • DOI: 10.1214/12-AOP758
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the height and width of a Galton–Watson tree with offspring distribution ξ satisfying Eξ = 1, 0< Var ξ < ∞, conditioned on having exactly n nodes. Under this conditioning, we derive sub-Gaussian tail bounds for both the width (largest number of nodes in any level) and height (greatest level containing a node); the bounds are optimal up to constant factors in the exponent. Under the same conditioning, we also derive essentially optimal upper tail bounds for the number of nodes at level k, for 1 ≤ k≤n.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno