Ir al contenido

Documat


The complete characterization of a.s. convergence of orthogonal series

  • Autores: Witold Bednorz
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 2, 2013, págs. 1055-1071
  • Idioma: inglés
  • DOI: 10.1214/11-AOP712
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we prove the complete characterization of a.s. convergence of orthogonal series in terms of existence of a majorizing measure. It means that for a given (an)∞n=1, an>0, series ∑∞n=1anφn is a.e. convergent for each orthonormal sequence (φn)∞n=1 if and only if there exists a measure m on T={0}∪{∑n=1ma2n,m≥1} such that supt∈T∫D(T)√0(m(B(t,r2)))−1/2dr<∞, where D(T)=sups,t∈T|s−t| and B(t,r)={s∈T : |s−t|≤r}. The presented approach is based on weakly majorizing measures and a certain partitioning scheme.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno