Ir al contenido

Documat


Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples

  • Autores: Florence Merlevède Árbol académico, Magda Peligrad
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 2, 2013, págs. 914-960
  • Idioma: inglés
  • DOI: 10.1214/11-AOP694
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The aim of this paper is to propose new Rosenthal-type inequalities for moments of order higher than 2 of the maximum of partial sums of stationary sequences including martingales and their generalizations. As in the recent results by Peligrad et al. [Proc. Amer. Math. Soc. 135 (2007) 541–550] and Rio [J. Theoret. Probab. 22 (2009) 146–163], the estimates of the moments are expressed in terms of the norms of projections of partial sums. The proofs of the results are essentially based on a new maximal inequality generalizing the Doob maximal inequality for martingales and dyadic induction. Various applications are also provided.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno