Ir al contenido

Documat


High level excursion set geometry for non-Gaussian infinitely divisible random fields

  • Autores: Robert J. Adler, Gennady Samorodnitsky, Jonathan E. Taylor
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 1, 2013, págs. 134-169
  • Idioma: inglés
  • DOI: 10.1214/11-AOP738
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider smooth, infinitely divisible random fields (X(t),t∈M), M⊂Rd, with regularly varying Lévy measure, and are interested in the geometric characteristics of the excursion sets Au={t∈M:X;(t)>u} over high levels u.

      For a large class of such random fields, we compute the u→∞ asymptotic joint distribution of the numbers of critical points, of various types, of X in Au, conditional on Au being nonempty. This allows us, for example, to obtain the asymptotic conditional distribution of the Euler characteristic of the excursion set.

      In a significant departure from the Gaussian situation, the high level excursion sets for these random fields can have quite a complicated geometry. Whereas in the Gaussian case nonempty excursion sets are, with high probability, roughly ellipsoidal, in the more general infinitely divisible setting almost any shape is possible.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno