Ir al contenido

Documat


Functional Itô calculus and stochastic integral representation of martingales

  • Autores: Rama Cont, David-Antoine Fournié
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 41, Nº. 1, 2013, págs. 109-133
  • Idioma: inglés
  • DOI: 10.1214/11-AOP721
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop a nonanticipative calculus for functionals of a continuous semimartingale, using an extension of the Itô formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative admits a suitable extension to the space of square-integrable martingales. This extension defines a weak derivative which is shown to be the inverse of the Itô integral and which may be viewed as a nonanticipative “lifting” of the Malliavin derivative.

      These results lead to a constructive martingale representation formula for Itô processes. By contrast with the Clark–Haussmann–Ocone formula, this representation only involves nonanticipative quantities which may be computed pathwise.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno