Ir al contenido

Documat


Random walks driven by low moment measures

  • Autores: Alexander Bendikov, Laurent Saloff-Coste
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 40, Nº. 6, 2012, págs. 2539-2588
  • Idioma: inglés
  • DOI: 10.1214/11-AOP687
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the decay of convolution powers of probability measures without second moment but satisfying some weaker finite moment condition. For any locally compact unimodular group G and any positive function ϱ:G→[0,+∞], we introduce a function ΦG,ϱ which describes the fastest possible decay of n↦ϕ(2n)(e) when ϕ is a symmetric continuous probability density such that ∫ϱϕ is finite. We estimate ΦG,ϱ for a variety of groups G and functions ϱ. When ϱ is of the form ϱ=ρ∘δ with ρ:[0,+∞)→[0,+∞), a fixed increasing function, and δ:G→[0,+∞), a natural word length measuring the distance to the identity element in G, ΦG,ϱ can be thought of as a group invariant.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno