We try to characterize those Tychonoff spaces X such that $\beta X\setminus X$ has the Menger property.
Referencias bibliográficas
L. F. Aurichi and A. Bella, On a game theoretic cardinality bound, Topology Appl., to appear.
G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.
M. Henriksen and J. Isbell, Some properties of compactifications., Duke Math. J. 25 (1958), 83-106. (http://dx.doi.org/10.1215/S0012-7094-58-02509-2)
W. Hurewicz, Uber eine verallgemeinerung des Borelschen theorems, Mathematische Zeitschrift. 24 (1925), 401-421. (http://dx.doi.org/10.1007/BF01216792)
E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733.
A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
M. Sakai and M. Scheepers, The combinatorics of open covers, Recent progress in General Topology III, J. van Mill and K. P. Hart ed., (2014)...
R. Telgarsky, On games of Topsoe, Math. Scand. 54 (1984), 170-176.
F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-630