Ir al contenido

Documat


When is a space Menger at infinity?

  • Aurichi, Leandro Fiorini [1] ; Bella, Angelo [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] University of Catania

      University of Catania

      Catania, Italia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 16, Nº. 1, 2015, págs. 75-80
  • Idioma: inglés
  • DOI: 10.4995/agt.2015.3244
  • Enlaces
  • Resumen
    • We try to characterize those Tychonoff spaces X such that $\beta X\setminus X$ has the Menger property.

  • Referencias bibliográficas
    • L. F. Aurichi and A. Bella, On a game theoretic cardinality bound, Topology Appl., to appear.
    • G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.
    • M. Henriksen and J. Isbell, Some properties of compactifications., Duke Math. J. 25 (1958), 83-106. (http://dx.doi.org/10.1215/S0012-7094-58-02509-2)
    • W. Hurewicz, Uber eine verallgemeinerung des Borelschen theorems, Mathematische Zeitschrift. 24 (1925), 401-421. (http://dx.doi.org/10.1007/BF01216792)
    • E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733.
    • A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.
    • M. Sakai and M. Scheepers, The combinatorics of open covers, Recent progress in General Topology III, J. van Mill and K. P. Hart ed., (2014)...
    • R. Telgarsky, On games of Topsoe, Math. Scand. 54 (1984), 170-176.
    • F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-630

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno